MicroFlow NMR Features List

Features List


Advanced features make MicroFlow NMR a
superior alternative in many applications
to both conventional and cryo-cooled NMR probes.

CapNMR probes provide outstanding value
that will give you exceptional results and
pay for itself in a few months of normal use.

You can investigate further on our feature tour.



Performance, High Sensitivity


Get Spectra From A few Micrograms of Sample

Low Power Allows Broadband Spectra

High Resolution

High Fill Factor and High Observe Factor

Low Noise / Clean Baselines

High Signal-to-Solvent Ratio

Excellent Salt Tolerance

Rapid Recovery from Steep Solvent Gradients

High Magnetic Field Gradients

Excellent Multi-Nuclear Sensitivity

Excellent Thermal Stability

Efficient Sample Delivery and Recovery


Simple and Effective


Sensible Sensitivity

Easy Shimming

Easy Tuning

Use All Your Standard NMR Methods

Sample Management Made Simple

Compatible with Varian, Bruker and JEOL

Easy Sample Recovery

Simple, Smooth Flowpath

Compatible w/ 300 MHz – 800 MHz Field Strengths

Excellent Solvent Compatibility


A Technology Boost That Pays for Itself


More Information, Less Sample

Consume Less Solvent

Affordable High Sensitivity

Maximize Magnet Utilization

Eliminate Tube Costs

Use Deuterated Solvents Exclusively

Lower Disposal Costs


Get the Spectra Now–Get Published Faster


Walk-up NMR

Rapid Probe Re-Installation

Fast Shimming with Presets

Fast Syringe Injection

Rapid Sample Loading up to 5 Meters Away

Up to 100x Faster than a Conventional 5mm Probe

Reduce Time to Acquire Full Set of 1D & 2D Spectra

No Waiting for Sample Recovery

Rapid Rinsing for Undetectable Carryover

Rapid Probe Removal and Storage


Flow-Through Reliability


Flexible, Precise Injections

Replaceable Filters Protect Flowpath

Backpressure Monitoring


Comprehensive Support


On-Site Installation
On-Site Training
Detailed Documentation
90-Day Free Telephone Support

Online Help Desk
FREE Technical Support by Email
Premium Telephone Support
Web-Based Training
per Incident Repairs OR Umbrella Coverage
Software Updates
Consumables Kit

Your answer to Affordable High Sensitivity. MicroFlow NMR

BU-CMLD Loads 54-Vial Tray

Open-Access NMR


“The walk-up spectrometers are accounted in 10-minute increments and can be used reserved for blocks of time ranging from 10 minutes to 24 hours depending on the time of day and whether the usage is on a weekend or weekday. To gain access to these instruments, please Request a xxxx CIC Account. After we have evaluated your needs, CIC staff will create your accounts and schedule training sessions as appropriate.”


  1. Log in your sample from any browser, tablet or smartphone.
  2. Bring the sample to the NMR system and place it in the reserved tray location.
  3.  Click the Run button. Walk away.  Your results will be waiting in your Inbox.



Thermo acquires picoSpin LLC, a Protasis licensee

Thermo Fisher Scientific acquired picoSpin at the end of 2012.  The agreement included the transfer of picoSpin LLC’s sub-license of Protasis’ extensive portfolio of microcoil patents, licensed from the University of Illinois at Urbana-Champaign (UIUC).  Protasis is pleased to support the picoSpin 45 and picoSpin 80 with its microcoil technology.  Protasis has interfaced both spectrometers to its One-Minute NMR automation software for use in beverage labelling applications.

Complete press release shown below:

Thermo Fisher Scientific Signs Agreement to Acquire Innovator in Miniature NMR Spectrometers, picoSpin

WALTHAM, Mass. – December 21, 2012

Thermo Fisher Scientific Signs Agreement to Acquire Innovator in Miniature NMR Spectrometers, picoSpin

Thermo Fisher Scientific Inc., the world leader in serving science, announced today that it has completed a purchase of Boulder, Colo.-based picoSpin, LLC, creators of the world’s first miniature nuclear magnetic resonance (NMR) spectrometer.

In 2010, picoSpin introduced the picoSpin-45, the world’s first miniature NMR spectrometer, offering the capabilities of larger spectrometers in a much more affordable, shoebox-sized unit. The device is ideally suited for academic, industrial and research applications where the cost, space and maintenance requirements make typical NMR spectroscopy impractical. The innovative design for the device—making it 70 times smaller than other devices of its type—earned it a 2012 R&D 100 Award from R&D Magazine (

The acquisition of picoSpin augments Thermo Fisher’s portfolio of spectroscopy solutions, ranging from complementary FT-IR and UV-Vis spectroscopy to full-scale gas, liquid, isotope ratio and inductively coupled plasma mass spectrometers.  The acquisition also allows Thermo Fisher Scientific to expand its array of analytical tools available to undergraduate and graduate chemistry laboratories, as well as analytical quality assurance and quality control laboratories in industry.

“Adding picoSpin’s unique product offerings to our existing capabilities in spectroscopy enables us to offer an even broader suite of chemical analysis,” said John Sos, vice president and general manager, molecular spectroscopy, Thermo Fisher Scientific. “Bringing NMR capabilities to new markets where its practicality has been limited represents significant value for our customers.”

picoSpin will be integrated primarily into the company’s chemical analysis business within the Analytical Technologies Segment. The company does not expect this transaction to have a material impact on its 2012 financial results.


About Thermo Fisher Scientific: Thermo Fisher Scientific Inc. is the world leader in serving science. Our mission is to enable our customers to make the world healthier, cleaner and safer. With revenues of $12 billion, we have approximately 39,000 employees and serve customers within pharmaceutical and biotech companies, hospitals and clinical diagnostic labs, universities, research institutions and government agencies, as well as in environmental and process control industries. We create value for our key stakeholders through three premier brands, Thermo Scientific, Fisher Scientific and Unityâ„¢ Lab Services, which offer a unique combination of innovative technologies, convenient purchasing options and a single solution for laboratory operations management. Our products and services help our customers solve complex analytical challenges, improve patient diagnostics and increase laboratory productivity. Visit



SMASH 2012

Protasis hosted a table at this year’s Small Molecule NMR (SMASH) Conference on September 9-12 in Providence, RI. We set up a One-Minute NMR system and ran it through its sample loading paces. The conference was held jointly with CoSMoS, the Society for Small Molecule Science with about 300 total attendees. Protasis showed two joint posters with our customer collaborators on CryoFlow NMR:

Poster #49
Improvements in Flow-Injection NMR as a Tool for High-Throughput Sample Analysis
Paul Krolikowski (1), L. Steven Hollis(1), Roger Kautz (2) and David Strand (3)

1.  Molecular Structure, Amgen Inc., Cambridge, MA, USA
2.  Barnett Institute at Northeastern University, Boston, MA, USA
3.  Protasis Corporation, Marlboro, MA, USA

Recently, dramatic improvements in S/N have been obtained using customized flow-NMR instrumentation by incorporating a small volume flow-cell (10-60 uL) with a high-sensitivity 600 MHz Bruker 5-mm TCI-cryoprobe and a Protasis sample delivery system. The large sensitivity gain provided by cryoprobe technology (as much as 20X increase compared to a micro-coil 500 MHz RT flow-probe) has dramatically reduced data collection times to a point where routine 1H and g-HSQCdept spectra can be collected on small samples (25 uL at 20 mM) in under 10 minutes. These hardware improvements have allowed implementation of rapid quantitative-NMR analysis for HTPP (High Throughput Purification Process) samples using Digital-Eretic referencing as an integral calibration technique. In addition, new flow-cell inserts have been designed which easily can be interchanged to alter sample volume or switched from flow to tube based operations in just a few minutes with minimal setup time.
The concept of tailoring the flow-cell volume to match that of the intended sample stream (with an active volume of 10, 30 or 60 uL) using a standard Bruker pass-through cryoprobe, will be discussed as part of our continuing effort to improve NMR sampling efficiency. The Protasis sample delivery station and operating system (One-Minute NMR) provides a flexible and convenient platform for submitting samples in 96-well plate format, or as single samples in walk-up mode. Automated data processing using ACD Automation Server provides a reliable solution for archiving and distributing the large amounts of processed data that are generated from plate-base HTPP submissions. In addition, segmented-flow NMR methods (SFA), using a susceptibility matched push-solvent (FC-43) to limit sample dispersion in the flow cell, are also being investigated in an effort to improve S/N with mass-limited samples. The initial results of these studies, which show up to a two-fold improvement in S/N vs. single-solvent push techniques, will be presented.

Poster #21
Segmented Flow Into  LC Probes Double Flow-NMR Sensitivity and Throughput
Roger Kautz (1), David Strand (2), and Steve Hollis (3)

1.  Barnett Institute at Northeastern University, Boston, MA
2.  Protasis Corporation, Marlboro, MA
3.  Amgen Corporation, Cambridge, MA

* Maintains uniform original concentration, for ligand-binding or qNMR studies.
* Confines sample in NMR coil volume, for optimal sensitivity.
* Improves throughput by 10 min/sample; reduces solvent consumption 5-fold.
* Applicable to cryo-flow for trace sensitivity, or old LC probe for high-throughput.

Flow-injection NMR (FIA-NMR) has proven valuable for acquiring spectra directly from vials or 96-well plates, avoiding the time and expense of preparing samples in tubes, and specialized automation to load tubes. Extending our previous work in segmented flow loading of microcoil probes (“microdroplet NMR”) [1], we here show how segmented flow (SFA) loading solves several problems seen with conventional flow-NMR into LC probes (60 uL or larger).

Segmented flow loads samples without dispersion or dilution — the sample is transported like a drop of water in oil. The flow system is filled with an immiscible fluid (fluorocarbon FC43) so the sample moves as a droplet or, in narrow tubing, as an elongated plug with a sharp boundary and with uniform (undiluted) concentration throughout. FC43 has magnetic susceptibility matched to D2O, and functions as “Shigemi tubes for a flow system” to confine the entire sample within the observed volume. To implement segmented flow, use of a fluorinated fluid in Teflon tubing is ideal; fluoro-silanized glass surfaces also work well. The data presented were obtained by using a stock commercial flow-NMR platform (Protasis One-Minute NMR) with a Teflon sample loop and transfer line. SFA and FIA were compared in in video of injected dye, and in on-flow and stopped-flow NMR spectra of a standard (20 mg/mL caffeine in D2O).

Results: SFA loading was explored in a cryo-flow system with a 60 uL nominal NMR observed volume (120 uL flowcell volume; 150 uL dead vol to center of V-obs). SFA loading 70 uL of the standard gave twice (2x) the NMR signal intensity as FIA loading; which was 95% the signal intensity of a flowcell filled with the standard. A 50 uL sample could be shimmed to the same lineshape as 70 uL or larger, but accordingly shows only 70% of the signal strength (50 uL/70 uL = 71%). Video of dye injections by SFA and FIA provide a concrete picture. Samples loaded with SFA move into the detected volume as a discrete object, like a car into a garage; accordingly, on-flow NMR signal strength rises linearly from first light to 100% as the leading edge of sample fills the coil volume; plateaus at 100% while the coil is filled, then linearly decreases to 0 as the trailing boundary of the sample passes out of the detector region. FIA samples, in contrast, arrive like the hot water at a distant tap: signal intensity increases more slowly with a slope projecting to 100% after 0.7 dead volumes, but cresting and tailing for smaller samples. Parabolic flow in the flowcell produced large concentration gradients both radially and axially, reflected in the lineshape (30 Hz) of the caffeine methyl resonances, which are concentration-sensitive. When flushing samples, the tailing in FIA required 300 uL (nearly 3 flowcell volumes) to bring residual signal below 2%.

Applications: Loading samples at a defined and uniform concentration enables ligand-binding or qNMR studies. Confining samples into the observed volume gives the theoretical optimum sensitivity for a probe, under unattended automation. SFA-NMR with cryoprobes gives high sensitivity; an old LC probe would serve for high throughput of routine chemistry samples.

1.  Lin et al, Anal. Chem 80: 8045 (2008)

SMASH 2012 program:

USP Kit-500x500

Restock Your Protasis Consumables Kit


Cut tubing square

Tubing Cutter

Tubing Cutter

Manual syringe load

Hamilton 8275 Syringe

8275 Syringe

Injection filter

Opti-Solve Filter

Opti-Solve Filter

Simple convenience

Thomson Nanofilter

Thomson Nanofilter

Keep fittings clean

Keep fitting clean!

No more bubbles!

Idex Degas Cartridge

See all CapNMR parts at our web store:

So You Always Have the Right Parts At Hand!